
www.embedded-world.eu

Dynamic LwM2M Data Model Mapping to OPC UA

Dovydas Girdvainis

Software Solutions

Hahn-Schickard

Villingen-Schwenningen, Germany

Dovydas.Girdvainis@hahn-schickard.com

Christoph Rathfelder

Software Solutions

Hahn-Schickard

Villingen-Schwenningen, Germany

Christoph.Rathfelder@hahn-schickard.com

Abstract—the digital transformation in production leads to a

growing number of sensor systems integrated into production

facilities. In addition to the physical integration these systems also

need to be integrated into the IT backend. OPC UA is one standard

promising to close the gap between shop floor and IT backend.

However implementing an interface on a custom sensor with

limited memory can be quite challenging, especially so when

dealing with devices that use wireless communication. To solve this

problem we propose a solution based on Lightweight Machine to

Machine (LwM2M) and OPC UA technologies. In this paper, we

present our approach showing how LwM2M communications

protocol works in conjunction with OPC UA technology. We

briefly discuss the advantages of LwM2M in the context of smart

automation and Industry 4.0 before explaining how sensor

information is translated into OPC UA compliant data. Finally, we

give some insights in our implementation and the various

technologies we used to achieve this task.

Keywords—LwM2M; OPC UA; automation; smart sensors;

Industry 4.0

I. MOTIVATION

Integrating smart sensor systems into production facilities is
the basis of Industry 4.0, nonetheless it is not a straightforward
task, due to the vast amount of choices between manufactures
and their offered products. One of the possible solutions for this
problem is to use a standard communication protocol like the
widespread OPC UA (Open Platform Communications Unified
Architecture) [1]. However, implementing an OPC UA interface
can be impossible on embedded systems with resource
constraints, thus requiring the use of a lightweight
communication model integrated into the OPC UA Server.

In our approach, we achieve this task by using the LwM2M
(Lightweight Machine to Machine) protocol to facilitate
communications between the OPC UA Server and one or more
sensor endpoints. To benefit from the OPC UA information
model, which represents clients within OPC UA Address Space,
we developed an automated data mapping technology from
LwM2M data descriptions to the OPC UA information model.

With our approach, the user is able to integrate sensor
systems, based on LwM2M communication, into the OPC UA
Server by using IPSO (IP for Smart Objects) definition files,
which are automatically mapped to the OPC UA information
model. Furthermore, the user is able to extend these definition
files with his own descriptions, by following the IPSO Work

Group’s defined standard and adding them into our generic OPC
UA Server’s object definitions directory.

II. FOUNDATIONS

This chapter provides an overview on the technologies, we
use in our approach covering OPC UA as communications
protocol, LwM2M as device management protocol and IPSO as
information model. We discuss the basics of each technology
that build the basis for our approach.

A. Open Platform Communications Unified Architecture

OPC UA is a platform independent communication protocol

primarily aimed at industrial applications. Its main goal is to

achieve interoperability between multiple vendors and their

products as well as to close the gap between the shop floor and

the backend IT systems. This technology is predominantly

based on the Client-Server model, but it recently included a

specification for the Publish-Subscribe model as well. The

standard consists of nineteen specifications, which cover

security, information model, historical data access, Publish-

Subscribe communications model and others [2]. The roots of

these specifications can be found in its predicator - OLE (object

linking and embedding) for Process Control, which is now

known as OPC Classic.

OPC UA allows the Client to interact with the Server in four

different ways, called Data Access, Alarms and Conditions,

Programs and Historical Access. Each way deals with different

Server functionalities and each is commonly described as an

access type. Data Access (DA) deals with the representation and

the use of automation data [3]. Alarms and Conditions (A&E)

deals with state representations of a system or its components

[4]. Program deals with complex and state-full functionalities

of the system [5]. Finally, Historical Data Access (HDA) deals

with storing and viewing of system’s historical events [6].

Most of these access types have a specialized way of

representing information to the Client, which is called a View.

A View is a specific subset of information the OPC UA Server

provides to the Client. The total sum of this information is

known as the Server’s Address Space [7]. Information within

the Address Space is represented in a hierarchical structure of

objects called Nodes. An example of such hierarchical structure

could be an Object Node, which is further described by various

different Variable Nodes, which intern are linked by References

to the original Object Node.

Every Node within OPC UA must consist of Attributes, and

may have References to other Nodes. An Attribute is an

elementary data element that describes a specific part of the

OPC UA Node, for example the Node ID Attribute. Some

Attributes are mandatory for Node instantiation, while others

are optional. A Client can access these Attributes via

specialized Read/Write/Query/Subscribe services provided by

the Server [8].

OPC UA Services are grouped into nine Service Sets:

1) The Discovery Service Set, which defines the Services

that allow a Client to discover the Endpoints implemented

within the Server.

2) The Secure Channel Service Set, which defines the

Services that allow for secure communication between the

Client and the Server.

3) The Session Service Set, which defines the Services that

allow the Client to manage and authenticate Sessions.

4) The Node Management Service Set, which defines the

Services that allow the Client to add, modify and delete various

Nodes within Server’s Address Space.

5) The View Service Set, which defines Services that allow

the Client to utilize various Views of Servers Address Space.

6) The Attribute Service Set, which defines Services that

allow the Client to read and write into Node Attributes.

7) The Method Service Set, which defines Services that

allow the Client to call Methods.

8) The Monitored Item Service Set, which defines services

that allow the Client to create, modify and delete Monitored

Items, which in term are used to monitor Attributes.

9) The Subscription Service Set, which defines Services

that allow the Client to create, modify and delete Subscriptions

for the Monitored Items.

In short – OPC UA is a service oriented and platform

independent communication protocol aimed at monitoring and

controlling industrial automation process. It seamlessly

integrates products from various vendors and provides

standardized ways of representing the information to the Client.

B. Lightweight Machine-to-Machine (LwM2M)

LwM2M is a device management protocol based around the

Application Layer within the Open Systems Interconnect (OSI)

model. It specializes in managing lightweight low power

devices over a variety of network types. The standard is

structured around a Client-Server model and defines four

interfaces for the Bootstrap, Client Registration, Device

Management and Information Reporting processes as well as an

internal resource model. Each interface may consist of

Downlink (from Server to Client) and Uplink (from Client to

Server) operations [9].

Bootstrap interface defines operations that provide essential

information to enable LwM2M Client to execute the Register

operation. This interface supports four different modes –

factory bootstrap, bootstrap from Smartcard, client initiated

bootstrap and Server initiated bootstrap.

Client Registration interface describes the available operations

for the client registration procedure. This interface consists of

three operations – Register, Update and Deregister. All of these

operations are fully uplink in regards to the LwM2M Server

Device management and service enablement interface

describes the available operations for the standard device

management. It is used to access and manage Object Instances

and their Resources. This interface consists of seven operations:

Read, Write, Execute, Create, Delete, Write attribute, and

Discover. All of these operations are downlink in regards to the

LwM2M Server

Information reporting interface describes the available

operations for the data observation. It is used to notify the

Observers when new values are available for processing. This

interface consists of three operations: Observe, Cancel

Observe, and Notify.

All of the mentioned operations are mapped to the Constrained

Application Protocol (CoAP) bindings within the LwM2M

Server implementation.

LwM2M declares a simple resource model, which defines a

LwM2M Client as a set of Objects and Resources. Each

LwM2M Object defines a vector of Resources and has a unique

Object identifier assigned by Open Mobile Alliance Naming

Authority (OMANA). For a Client to use a specific LwM2M

Object, it first must be instantiated with the Resource defined

by OMANA and assigned an instance id. Each LwM2M

Resource may contain a value, if it is described as

Readable/Writable, or contain a link to an action, if it is

described as Executable. Resources can be declared as

Mandatory or Optional. If a Resource is defined as Mandatory

within the LwM2M Object then it must be instantiated by the

client for the LwM2M Object instantiation to succeed, while

Optional Resources may be omitted by the Object instantiation

procedure.

To summarize LwM2M is application centered device

management protocol, which defines four common application

interfaces and a common resource model, which extends CoAP

technology.

C. Internet Protocol for Smart Objects (IPSO)

IPSO is an information model based on OMA LwM2M

specification. It declared the Object Representation, available

Data Types and Operations as well as supported Content

Formats [10].

Each Object is mapped into the Uniform Resource Identifier

(URI) path as declared by OMA LwM2M Resource Model.

This URI represents the Object ID, Object Instance ID and the

Resource Type ID. Each field is an unsigned 16-bit value. This

template follows the Web Linking [11] and CoRE Link Formats

[12], thus allowing for simplistic API designs.

IPSO declares seven Data Types:

1) A String, which is defined as a standard UTF-8 string

type.

2) An Integer, which can be a 64/32/16 or 8 bit signed

integer type.

3) A Float, which can be a 64 or 32 bit floating point value.

www.embedded-world.eu

4) A Boolean, which is defined as an integer with the value

of 0 or 1.

5) An Opaque, which is defined as a sequence of binary

octets.

6) Time, which is defined as a signed integer, representing

the number of seconds since Jan 1st 1970, UTC0.

7) An Object Link, which is defined as two 16 bit long

unsigned integers in Network Byte Order (NBO), referring to

an instance of another Object.

This information model implements operation types declared

in OMA LwM2M specification. These operations are split into

four groups - Resource operations, Object instance operations,

Object operations, and Attribute operations. Resource

operations declare the available operation per Resource. Each

Resource must have at least one Read, Write or Execute

operation and it may have both Read and Write or Execute

operations at the same time. These operations are restricted by

Access Type field within the Resource declaration. Object

instance operations allow for Create and Delete of multiple

instances of the same Object type, if the Multiple Instances field

is set to true. Object operations are similar to Resource

operations except they lack the Execute operation type.

Attribute operations allow to Set and Discover LwM2M

Attributes.

In brief, IPSO is a standard, which further defines the

LwM2M Resource Model to improve interoperability of

various LwM2M devices and applications.

III. APPROACH

As already mentioned, our LwM2M Adapter acts as an

enabler for the OPC UA Server and provides real data for the

Node abstraction, while the OPC UA Server handles the

hierarchy of Device Nodes and the communication between the

OPC UA Clients. “Fig. 1.” shows an overview of our approach

for the OPC UA Server. Within this figure, we see three major

parts of an OPC UA Client-Server model: OPC UA viewer

application (1), which displays the content of OPC UA Address

Space within the OPC UA Server (2) and the Database (3). We

structured our OPC UA Server (2) into five modules: OPC UA

Server implementation (2.1), Technology adapter manager

(2.2), Technology adapter implementation (2.3), Historizer

(2.4) and the Utilities module (2.5). The Server communicates

with OPC UA viewer application (1) via the OPC UA Service

Set, which enables the user to access the endpoints and Server

nodes, as well as historical values from the Database (3) via the

Historizer module (2.4).

OPC UA Server implementation (2.1) handles the OPC UA

Address space, Services and Views, while the Historizer (2.4) is

responsible for writing data values from endpoint nodes into the

database as described by the OPC UA Historical Access.

Our Technology adapter manager controls the

communication between OPC UA Server and all of the

managed Technology Adapters, as well as the initialization of

supported Technology Adapters. A Technology Adapter is an

abstraction of different communication protocols, in this case,

Fig. 1. Approach overview

it is the LwM2M communication protocol, and hence it is called

the LwM2M Adapter.

Finally, our Utilities Module enables event driven

communication between all other modules and allows I/O

between the file system and the Server, to process Server

configuration, technology adapter’s files and event logging.

In this chapter, we focus on the conversion from LwM2M

information model to the OPC UA Address Space, thus

covering the device registration

interaction, during which such

mapping occurs.

A. Approach Overview.

In our approach, Technology

Adapter is realized as a LwM2M

Adapter. It holds the IPSO

Information Model, which is

described in more detail in the

following section, and the Server

Configuration, which specifies

LwM2M Server parameters, like

the port number and the IPv6

prefix. Our Technology Adapter

class diagram can be seen in “Fig.

2.”, from which it is clear, that

the adapter depends on the Server

interface, which is responsible

for managing incoming and

outgoing LwM2M events and commands. Server interface

internally depends on the Client Handler interface that handles

various LwM2M events generated by the LwM2M Client, and

keeps track of all know LwM2M Device within the network.

These LwM2M Devices are described by the Device interface,

which holds information like device name, device ID and IPSO

Object dictionary.

“Fig. 3.” depicts an interaction diagram illustrating the

actions when a new device connects to the network. Once a

device is connected to the LwM2M Server (1), a LwM2M event

(2) will be triggered in the Client Handler, which will start the

processing of newly found LwM2M Device. This reads

information, like the device name, ID, then checks if this data

is valid (4). After that, IPSO data will be read from the

registration request. IPSO Object description (7) is then read

and checked against the currently loaded IPSO Information

Model (8). If the object is malformed or unsupported by the

IPSO Information Model, it is discarded and processing of the

next object is started. If the IPSO Object is supported, related

Resources (10) are processed and checked in a similar manner

(11) as previously. Once all of the Objects have been checked

and created the system creates an appropriate device (16) from

all of the previously processed information. A notification (17)

to the Technology adapter manager is sent with a valid pointer

to this device, if it was processed correctly or an Invalid Device

event, if information has been malformed or unsupported. This

notification triggers OPC UA Server to start building the Device

Node (1).

Our Device Node is a complex Node made out of many sub

Nodes, linked by References (21). To simplify terminology we

call these Sub Nodes - Children of the Device Node. These

Children are complex Nodes in the case of IPSO Objects, and

simple Nodes in the case of IPSO Resources. We differentiate

these types by calling them Object Node (19) and Resource

Node (20).

Fig. 2. LwM2M Adapter class

diagram

Fig. 3. New Device connected interaction diagram

www.embedded-world.eu

Typically, Resource Nodes (20) are the only Node types that

have real data. However as described in the following section,

we allow specific Object Nodes (19) to contain it as well. This

property is identified by the IPSO description, and specifies

whether the Node can be monitored for value changes. Once all

of the Children Nodes are linked (21) to the Device Node,the

system checks, which of Nodes have the Observable property

and be registers them for monitoring (22).

B. Dynamic IPSO Information Model.

Before LwM2M Clients can register, our LwM2M Server

implementation requires the IPSO descriptions library to be

loaded and processed into the Server. A specialized parser

converts the description files into description objects, which

will create an internal IPSO descriptions dictionary. As

previously described, this dictionary will be used during the

LwM2M processing (3). The IPSO descriptions library consists

of multiple .xml files, each describing LwM2M Object and its

Resources, these files are dynamically loaded at LwM2M sever

startup.

C. Static and Dynamic Fields.

During our development phase, we identified that certain

LwM2M Resources never change throughout the lifetime of the

Client. These Resources typically describe static information of

the Object like the IPSO-Alliance’s “Units” Resource. This

Resource describes what measurement units, this object uses.

In majority of cases this resource will never change, hence we

do not need to monitor, nor save it within our historical

database. So in turn, we call this Resource Static and our OPC

UA Server does not need to provide any monitoring or

historization services to it. To simplify the identification of such

Resources we extended the IPSO Alliance’s Resource

definition with a new field called “Dynamic”. This allows the

OPC UA Server to only assign Read/Write services to Static

Resources and pay closer attention to Dynamic ones.

Similar to the “Dynamic” field for Resource definitions, we

found that it is quite convenient to package all of the Dynamic

Resources of the Device and pack it into a Dynamic Object

Instance. This Object can be identified by another new

“Dynamic” field within the IPSO Object definition. Since we

know, that all of the Resources within this Object are Dynamic,

we can skip the “Dynamic” field definitions for each of the

Resources and assign a single monitoring to the entire Object.

This approach further optimizes IPSO Description processing

and Value observation on the OPC UA Server.

D. Event Mechanism.

As illustrated in “Fig .1.” our OPC UA Server uses events to

facilitate various requests from the OPC UA and the LwM2M

Clients alike. To identify events, we separate them into two

types: LwM2M events and OPC UA events. LwM2M events

are events coming from the LwM2M device and to OPC UA

Server, this would include “New device connected” event,

previously discussed and shown in “Fig. 3.”, as well as “Device

disconnected” and “Device value changed” events. OPC UA

events are events coming from the OPC UA Client to the OPC

UA Server, this would include such events as “Read Node

Value”, “Write Node Value”, “Execute Node Command” and

“Read Node’s Historical Value”.

IV. IMPLEMENTATION

As shown in “Fig. 4.” our implementation consists of five

technology stacks that correspond to OPC UA Server packages

depicted in “Fig. 1.”. These technology stacks are: the

Automation Service Next

Generation (ASNeG) [13] OPC

UA Stack (1), ASNeG OPC

UA Database (2), IPSO Parser

(3), LwM2M interface (4) and

the Eclipse Wakaama [14]

library (5).

We use the ASNeG OPC

UA Stack open source

framework for our OPC UA

Server implementation (2.10

from “Fig. 1.”. This framework

provides a Software

Development Kit (SDK) for

Client\Server applications,

which can be run as dynamic

libraries and a Server

information model with

configuration settings in an

XML format, thus allowing the

user to configure the OPC UA

Server to suit the needs of their applications.

Our Historizer (2.4) implementation from “Fig. 1” is based

on an additional ASNeG’s open source project, the OPC UA

Database (2) that provides the interface to Open Database

Connectivity (ODBC) and MySQL database.

Our Technology adapter manager (2.2) from “Fig. 1.”, is

implemented within the IPSO Parser (3), which we developed

as our initial adapter manager. As discussed when presenting

our approach, it controls the dynamic loading of IPSO

description files, LwM2M device conversion to OPC UA

Address Space and the Event Hander.

A part of our Technology adapter implementation (2.3) from

“Fig 1.” (mainly the interface between the Technology adapter

manager and the adapter itself), is implemented in the LwM2M

interface (4), which contains LwM2M device descriptions.

Finally, the rest of our Technology adapter implementation

(2.3) from “Fig. 1.” is based on an open source implementation

of OMA’s LwM2M protocol from Eclipse called Wakaama

[14]. This library allows us to build our LwM2M Server as a

dynamic library. The full implementation of our approach can

be found in our open source project the “Non-disruptive Kit for

the Evaluation of Industry 4.0” (NIKI 4.0) [15].

V. CONCLUSIONS

 In conclusion, our approach allows the user to work with
LwM2M devices as OPC UA Nodes within the OPC UA Server,
by mapping the LwM2M Objects and Resources to the OPC UA
Nodes with the help of dynamically loaded IPSO Information
Model. This Information Model can be adjusted to suit the needs
of the application as well as allow the user to expand it with new

Fig. 4. Technology stack

sensor systems based on the LwM2M technology. As seen from
our approach, if the sensor confirms to LwM2M Information
Model, it will be processed and converted into appropriate OPC
UA Nodes, which can be accessed and controlled via OPC UA
Client applications.

VI. ACKNOWLEDGMENT

This work has been partially funded by the Baden-

Württemberg Stiftung as part of the NIKI 4.0 project and the

Bundesministerium für Bildung und Forschung – BMBF as part

of the projects Parsifal 4.0 and Ameli 4.0.

VII. REFERENCES

[1] U. Steinkrauss, „Overview: OPC Unified Architecture

Technical overview and short description,“ 2010.

[2] OPC FOUNDATION®, „OPC Unified Architecture,

Part 1: Overview and Concepts“.

[3] OPC FOUNDATION®, „OPC Unified Architecture,

Part 8: Data Access,“ 2017.

[4] OPC FOUNDATION®, „OPC Unified Architecture,

Part 9: Alarms and Conditions,“ 2017.

[5] OPC FOUNDATION®, „OPC Unified Architecture,

Part 10: Programs,“ 2017.

[6] OPC FOUNDATION®, „OPC Unified Architecture,

Part 11: Historical Access,“ 2017.

[7] OPC FOUNDATION®, "OPC Unified Architecture,

Part 3: Address Space Model," 2017.

[8] OPC FOUNDATION®, „OPC Unified Architecture,

Part 4: Services,“ 2017.

[9] Open Mobile Aliance, "Lightweight Machine to

Machine Technical Specification," 2017.

[10] OPA IPSO WorkGroup, „https://github.com/IPSO-

Alliance/pub,“ [Online]. Available:

https://github.com/IPSO-Alliance/pub. [Zugriff am 4

December 2018].

[11] M. Nottingham, „Web Linking,“ 2010.

[12] Z. Shelby, „Constrained RESTful Environments (CoRE)

Link Format,“ 2012.

[13] ASNeG, „github.cim,“ github, [Online]. Available:

https://github.com/ASNeG/OpcUaStack. [Zugriff am 14

Januar 2019].

[14] Eclipse wakaama, „github.com,“ github, [Online].

Available: https://github.com/eclipse/wakaama. [Zugriff

am 14 Januar 2019].

[15] C. B. A. B. D. D. A. G. N. H. K. A. N. C. R. M. S.

Sascha Alpers, „Nicht-disruptives Kit für die Evaluation

von Industrie 4.0,“ 2017.

